Szóval...
Amint látom, az világos hogy a szupernováknak (SN) több fajtája van. Alapvetõen két osztályba sorolhatóak. I-es és II-es osztály. Ezeken belül vannak még kisbetûvel jelölt alosztályok stb. A klasszifikáció a spektrális (színképvonalak alapján) és fotometriai (a fénygörbe alakja) tulajdonságok alapján történik. Bár a robbanás fizikai háttere nem játszik szerepet közvetlenül az osztályozásban, mégis ez határozza meg azokat a jegyeket amiket a besorolásnál használnak.
Ahhoz, hogy a SN robbanás bekövetkezzen nem kell 8 naptömeg. Az Ia típusú SN-k esetén ez a határ 1,38 naptömeg, az un. Chandrasekhar-határ. Az ilyen típusú SN-k kizárólag kettõs vagy többes csillagpároknál, tripleteknél stb fordul elõ. A lényeg hogy a rendszerben legyen egy már korábban elfejlõdött csillag (nevezetesen egy fehér törpe) és egy óriás csillag, melyrõl a fehér törpe anyagot tud "elszívni". Ha az anyag átáramlása a fehér törpére nem túl gyors, akkor idõvel a tömege átlépi a Chandrasekhar-határt és bekövetkezik a robbanás. Mivel a robbanó anyag mindig ugyanolyan tömegû, ezért a felszabaduló energia minden Ia típusú SN robbanásakor közel ugyanannyi (10^44 J). Ezért használhatók ezek a SN-k távolságmérésre.
A II-es típusú SN-k esetében a csillag tömege viszont minimum 8-9 naptömegnek kell lennie. Ez a tömeg elég ugyanis ahhoz, hogy az lehetõvé tegye a csillag magjának összeomlását. Ez nagyon rövid idõ alatt következik be, így a csillag külsõ anyaga rázuhan az elfajult anyagból álló magra. A több 10000 km/s-os sebességgel bezuhanó anyag szinte lepattan a magról, és ez, plusz a nagy neutrínófluxus egy, a csillag számára végzetes kifelé tartó lökéshullámot indít el kifelé. Ez maga a SN robbanás.
Az Ib és Ic típusú SN-knál nagyjából ugyanez zajlik le, azonban a színkép profilja teljesen más, mivel a progenitor (SN jelölt) a robbanás elõtt jelentõs anyagmennyiséget veszít a külsõ tartományaiból a nagy csillagszélnek köszönhetõen.
Mai tudásunk szerint a GRB-k (Gamma-Ray Burst, gammafelvillanás/kitörés) csak kis hányadáért felelõsek a az Ib ill Ic SN-k. Annyit azért tudunk, hogy eddig mindig távoli események okozták a GRB-t. Ez valószínûleg összefüggésben van azzal hogy rendkívül ritkák. Sûrûségük évente kb 2 GRB/ Gpa-3. (olyan kocka melynek éle 1 milliárd parsec. 1 pc=3,26 fényév) Az sem véletlen, hogy az olyan GRB-k melyek SN-kal hozhatók kapcsolatba, un "starburst" galaxisokban villannak fel, ahol a csillagkeletkezési ráta nagyobb mint 10 naptömeg/év. Ezekben ugyanis fõleg nagy tömegû 0 és W (a legnagyobb és legforróbb) típusú csillagok keletkeznek, melyeknek rendkívül erõs a csillagszele. Így aztán az már végkép nem meglepõ, hogy a szülõ galaxisok kb 50%-áról kimutatható hogy ütközésen estek/esnek át ami a starburstért felelõs.
Az elsõ olyan SN melyet GRB-tel azonosítottak az 1998bw jelet viseli. 40 Mpc-re volt (eddig a legközelebbi ilyen típusú objektum), ezért jól detektálható volt minden hullámhosszon, annak ellenére hogy a robbanás becsült energiája kissebb volt mint az várható lett volna. A spektrális analízisek alapján ennél a SN-nál vetõdött fel elõször az asszimetrikus robbanás lehetõsége. A jet tengelye és a látóirány szögére 15°-30° közötti értéket számoltak.
Az elsõ mérésekkel bizonyított asszimetriát a SN 2003dh-nál mérték, melyet szintén megelõzött egy GRB és a fénygörbe Ic-re engedett következtetni. A progenitor csillag korábban ledobott anyaga által okozott abszorpcióban találták meg a bizonyítékot.
Azóta sok SN-ról bebizonyosodott hogy kapcsolata van egy GRB-tel, de nem mindegyik ilyen robbanás okoz gammafelvillanást.Legalábbis a szokásos energiájú és profilú kitörést nem. Annak ellenére sem hogy a jet iránya is megfelelõ. De az is ok lehet hogy a SN a többi tartományban nagyon halvány. Tehát a folyamat pontos fizikai hátterét még nem ismerjük. A mag kollapszusának mindenesetre fõszerep jut abban hogy milyen lesz a robbanás. A lényeg: kb minden 50 ilyen típusú SN-ra 1 GRB jut.
Arról nem is beszélve hogy a gammafelvillanásoknak sem egy fajtája létezik. Vannak olyan GRB-k amit nem okozhat SN.